

Even before beginning a formal Pump System Assessment, KCF uses a <u>simple</u> pre-screening survey to collect information about your system for a Life-cycle Cost analysis. This analysis helps determine how strong a business case exists for a formal assessment. We also assess the criticality of the system as well as potential concerns with the way the system is configured or performs to determine if strong potential exists for system optimization.

THE PROCESS:

1. Define the Problem

- 2. Assess the Current Situation
- 3. Define the Scope and Boundaries
- 4. Define Roles and Responsibilities
- 5. Collect Data

6. Analyze the Data

- 7. Recommend Countermeasures
- 8. Implement Countermeasures
- 9. Validate the Results
- 10. Transfer Lessons Learned

\checkmark Life-cycle Cost analysis to assess the business case

Motor Calculations									Hydraulic (Calcula	tions		Energy Calculations							
Vol (V)	Cur (A)	PF	PF Cg?	Mo Ef	VFD Ef	Ph Cor	BHP	Head (ft)	Flow (GPM)	Sp Gr	WHP	Act Pu Ef	Rat Pu Ef	Op Hr %	\$/KW-h	An Act Cost	An Rat Cost	An Av Cost		
2300	78	0.90	Yes	0.90	1.00	1.73	337.4	600	1360	1.03	212.2	62.9%	80%	92%	\$0.07	\$175,296	\$137,843	\$37,453		

		One	-Time C	osts			Annual	Costs	L					
Rated Life (Yr)	Act Life (Yr)	Purchase	Install	Disposal	Labor	Maint	Downtime	Environ	Safety	Energy	Total LCC	Rated LCC	Total Av LCC	An Av LCC
10	2	\$0	\$0	\$0	\$0	\$182,969	\$0	\$0	\$0	\$175,296	\$3,582,653	\$2,817,200	\$765,453	\$76,545

✓ Investigation into system criticality, configuration, and performance

			C)per	atior	nal						0	Cond	itior	n/Ca	re						0	Configu	ration/O	reation						
3	3	1	2	2	2	3	3	3	3	3	3	2	2	2	3	1	1	2	3	3	3	2	2	2	2	3	2				
Safety/environ.	Criticality	Monitoring	% Operation	Horsepower	Pressure	Flow	Downtime costs	Energy costs	Maint. costs	MTBR	MTBF	Mech. seal failure	Bearing failure	Vibration	Cavitation	Deter. of base	Deter. of piping	Motor trips	Elbow/Valve Near Inlet	Bypass	Throttling	Pumps in parallel	Run intermittently in cont. process	Run continuously in batch process	Fixed speed, varying demand	System changed, same pump	Pump changed, same system	Operational Severity	Cond./Care Severity	Config./Creat. Severity	Overali severity
2	4	2	4	3	3	3	2	2	3	4	4	4	4	3	3	3	2	2	4	0	2	0	0	0	0	2	0	2.10	1.74	1.20	4.4

After the decision is made to pursue a formal Pump System Assessment, KCF works with you to craft a Scope of Work document. In it, the boundaries of the system are defined and a plan is detailed for collecting and analyzing necessary data. We simultaneously coordinate the formation of an assessment team representing all stakeholders to ensure that every facet of the assessment is supported by appropriate personnel.

THE PROCESS:

- 1. Define the Problem
- 2. Assess the Current Situation
- 3. Define the Scope and Boundaries
- 4. Define Roles and Responsibilities
- 5. Collect Data
- 6. Analyze the Data
- 7. Recommend Countermeasures
- 8. Implement Countermeasures
- 9. Validate the Results

10. Transfer Lessons Learned

Definition of roles and responsibilities

<u>Customer</u>

- ✓ Team Leader
- ✓ Capital Projects Manager
- ✓ Maintenance/Reliability Manager
- ✓ Controls/Process/Elec. Engineers
- ✓ Procurement Specialist
- ✓ Millwrights

<u>KCF</u>

- ✓ Pump System Assessor
- ✓ National Sales Manager
- ✓ Strategic Account Manager
- ✓ Optimization Specialist
- ✓ Technical Analyst
- ✓ Field Analyst

Third-party (optional)

- ✓ Design Firm Rep.
- ✓ Installer
- ✓ OEM Rep.
- ✓ Maint. contractor

✓ Development of data collection and analysis plan

To learn more contact sales@kcftech.com or 1.814.867.4097 ext.1

At KCF, we excel at collecting and interpreting data. KCF can measure data like pressure, flow, current, and voltage or integrate it from your systems. We can also deploy many other tools, including motion amplification, thermal imaging, asset teardown, CFD analysis, and more. KCF's certified assessors then dig into that data using a systems approach to identify root cause(s) of failures and make practical recommendations for optimizing your system.

THE PROCESS:

- 1. Define the Problem
- 2. Assess the Current Situation
- 3. Define the Scope and Boundaries
- 4. Define Roles and Responsibilities
- 5. Collect Data

6. Analyze the Data

- 7. Recommend Countermeasures
- 8. Implement Countermeasures
- 9. Validate the Results
- 10. Transfer Lessons Learned

\checkmark CFD showing regions of high and low flow

 \checkmark Motion amp footage showing hard start

Teardown showing abrasive wear

 \checkmark Thermal imaging tracking efficiencies

To learn more contact <u>sales@kcftech.com</u> or 1.814.867.4097 ext.1

A Pump System Assessment culminates in a comprehensive report. This report begins with a high-level executive summary and continues with a detailed description of the methodologies used, data collected, analysis performed, and countermeasures recommended based on potential life-cycle savings. The report completes the assessment phase of the study, but it is not the end of the work.

THE PROCESS:

- 1. Define the Problem
- 2. Assess the Current Situation
- 3. Define the Scope and Boundaries
- 4. Define Roles and Responsibilities
- 5. Collect Data
- 6. Analyze the Data
- 7. Recommend Countermeasures
- 8. Implement Countermeasures
- 9. Validate the Results

10. Transfer Lessons Learned

	Table of Contents	
	Revision History	
	Executive Summary	
	Optimization Strategy	6
	1. Problem Statement	7
	2. Current Situation	8
technologies	Facility	8
v techniologies	Problem Statement	
	System Specification & Details	
	3. Scope and Boundaries	
	Outside Scope and Boundaries	
	A Poles and Pesponsibilities	
	5 Data Collection	12
	Operating Conditions	
	Strategy	
	Findings	
	System Dimensions	
	Inlet Pressure	
	Outlet Pressure	
	Current, Voltage, and Power	
	Accumulator Pressures	
EVETEM ACCECCMENT	Vibration	
STSTEIM ASSESSIVIEINT	Motion Amplification	
	Thermal Imaging	
	Pump Teardown	
Prepared by: Christine Truong and Shawn Davis	lank inspection	
Date: 08/31/2021	6. Analysis	
Date: 00/51/2021	8 Implementation of Countermeasures	
	9 Desults of Implementation	45
	10 Transfer of Lessons Learned	45
	Appendix	46
	Дррении	

Recur (yr)

2 2

2

1

1 1

1

1 1

An assessment is nice, but it results in no change unless countermeasures are implemented. KCF may be contracted to work with you throughout this critical phase of the process, but it is up to your team to do the heavy lifting. Once you've implemented countermeasures, KCF can help validate the results and work with you not only to optimize the system under study but also to transfer lessons learned to similar systems throughout your company.

Costs Incurred

THE PROCESS:

the Problem	Variable Frequency Drive	\$ (19,000)	0	Pump Purchase/Rebuild	\$	12,000	
the Current Situation	Labor for Install	\$ (6,000)	0	Pump Install	\$	4,000	
	PLC/VFD Programming	\$ (3,000)	0	Pump Disposal	\$	-	
the Scope and Boundaries	Downtime for Install (Sched)	\$-	0	Labor	\$	-	
Roles and Responsibilities	Pump System Assessment	\$ (30,000)	0	Maintenance	\$	14,000	
Dete	Cust. Time/Labor for Assess	\$ (10,000)	0	Downtime	\$	40,000	
Data	Pressure/Level/Flow Sensors	\$ (12,000)	0	Environmental	\$	-	
e the Data	Data Analysis	\$ (6,000)	1	Safety	\$	-	
mendCountermeasures				Energy	\$	19,000	
mend countermedsures	Total One-Time	\$ (80,000)			\$	-	
nent Countermeasures	Total Annual	\$ (6,000)			\$	81,000	
e the Results	Rated Life (yr)	10				10	
	Total Life-cycle	\$ (140,000)			\$ 8	310,000	
er Lessons Learned	Annual Savings				\$	81,000	
	Net Life-cycle Savings				\$ E	570,000	
	Time To Achieve ROI (yr)					1.73	

Cost

Recur (vr)

Costs Avoided

- Define 1.
- 2. Assess
- 3. Define
- 4. Define
- 5. Collect
- 6. Analyze
- 7. Recom
- 8. Implem
- 9. Validat

MARTdiagnostics[®]

10. Transfe

To learn more contact sales@kcftech.com or 1.814.867.4097 ext. 1

Savings